

FINAL PROJECT

95-748:  SOFTWARE AND SECURITY

Stefan Andreev, Adarsh Rai, Devan Rajendran

Akihiro Sunagawa, Changwei Yao

1

1. Broken access controls 1

a. Hijack a session 1

Vulnerability Analysis 1

Exploitation 1

Mitigation 2

Security Touchpoints 3

d. Spoofing an authentication cookie 3

Vulnerability Analysis 3

Exploitation 3

Mitigation 6

Security Touchpoints 6

2. Cryptographic Failures 7

a. Crypto Basics 7

Vulnerability Analysis 7

Exploitation 7

Mitigation 8

6. Identity & Auth Failure: 9

b. Insecure Login 9

Vulnerability Analysis 9

Exploitation 9

Risk Categorization & Mitigation Strategy 9

Security Touchpoints 10

d. Password Reset 10

Vulnerability Analysis 10

Exploitation 11

Subtask: Email functionality with WebWolf 11

Subtask: Find out if the account exists 11

Subtask: The Problem with Security Questions 11

Risk Categorization & Mitigation Strategy 12

Security Touchpoints 12

e. Secure Passwords 13

Vulnerability Analysis 13

Exploitation 13

Mitigation 13

Cross-Site Scripting (XSS) 19

1. Reflected XSS 19

2. DOM-Based XSS 19

Risk Categorization 20

Mitigation Strategies 20

Security Touchpoints 21

Path Traversal 21

Vulnerability Assessment 21

2

Exploitation 21

Risk Categorization 22

Mitigation Strategy 22

Security Touchpoints 21

1

1. Broken access controls

 a. Hijack a session

Vulnerability Analysis

Session hijacking refers to the malicious act of taking control of a user’s web session. A session,

in the context of web browsing, is a series of interactions between two communication endpoints,

sharing a unique session token to ensure continuity and security.

Exploitation

We used burpsuite to intercept the traffic flowing out of our webgoat local server. Using the proxy

tab we were able to catch and intercept the POST request for hijacking the session -

This request was then sent to the repeater to hit the URL with different contents in the request

header.

The Hijack cookie value within the Cookie header was removed and the request was sent multiple

times. Then the response indicated a set cookie parameter that involved a hijack cookie value.

This value took the following values on repeatedly hitting the request -

As you can see the first half of hijack cookie value seemed to be increasing uniformly with each

request. The second half of the hijack cookie seems to be a timestamp of sorts.

To try and sign on with the required user, we need to find the value of the hijack cookie that lets

the server form a trust with your request and then signs you on. The screenshot shows a missing

value of hijack cookie that ends with 434. You can use this value and iterate the second half from

6661795 till 715379 using the intruder option within burpsuite as shown below-

2

Upon running this script, you can see that for a particular value of 689657 you get a positive

response from the server with 439 characters which says that you were successfully able to sign

in to the system using the derived hijack cookie value.

This means that you were successfully able to hijack into the session and upon refreshing the

page you can be seen to be logged in and the challenge is completed on webgoat.

Mitigation

Some mitigation strategies are following basic security practices such as avoiding public Wi-Fi for

sensitive transactions, using VPNs, and keeping software up to date. It’s also important for users

to be aware of phishing tactics and to understand the importance of logging out of sessions,

especially on shared computers.

Security Touchpoints

Implement strong session management mechanisms: This involves using securely generated,

random session tokens that are difficult to predict, enforcing short session timeouts to minimize

the risk window, and ensuring automatic session invalidation upon logout or inactivity.

Secure coding practices: Proper input validation and sanitization, along with setting HTTPOnly

and Secure flags on cookies help mitigate vulnerabilities like cross-site scripting (XSS).

Using Multi-Factor Authentication (MFA): This adds an extra layer of security by requiring users

to verify their identity through an additional factor, such as a one-time passcode or biometric

3

authentication. Even if an attacker compromises a session token, MFA ensures that they cannot

gain full access without the second authentication factor.

d. Spoofing an authentication cookie

Vulnerability Analysis

Spoofing and authentication cookie involves modifying the authentication cookie in a request so

that the server automatically authenticates the request thinking that it is coming from a legitimate

source.

Exploitation

For this we have used the same methodology as before, where we used Burpsuite to intercept

the request to understand how authentication cookies work on webgoat, find a pattern and exploit

the pattern for a particular user that is provided.

Lets try decoding and understanding what authentication cookie is being generated upon signing

in with credentials - webgoat and admin for both user and password.

We started by intercepting the request and sending it to the repeater to modify the request and

hit it from burpsuite.

For username = admin and password = admin we have -

For username = admin and password = admin we have the following cookie generated -

4

This has to be translated from base 64 to url-8 first and this could be done in an online base64

converter -

Cookie for username&password = webgoat

Cookie for username&password = admin

This value can then further be translated and decoded from UTF-8 (Hex) to text using another

online tool -

5

As you can see, the converted string reads AQybrWXULWnimda and AQybrWXULWtaogbew

which has the words admin and webgoat reversed and attached at the end of a string. This means

that authentication cookies are being created by having a fixed string “AQybrWXULW” followed

by a reversed string for the user id.

To spoof an authentication cookie for the user “Tom” we will need to encode the string -

“AQybrWXULWmot” to hex and then base64.

Then encoding this to base 64 -

Adding a value called spoof_auth into the cookie header in the request and hitting the request as

shown below, we were able to log into Tom’s account using authentication cookie spoofing. This

shows that we were successfully able to log into toms account -

6

Mitigation

Preventing attackers from tampering with cookies through practices like strong encryption for

authentication cookies making it harder for the attackers to find patterns and decrypt them. This

can also involve periodically regenerating session IDs after successful authentication to minimize

the risk of session fixation attacks.Other mitigation strategies involve using a password manager

and always log in using sites with HTTPS.

Security Touchpoints

To prevent this from a software security standpoint, here are some suggestions -

Sanitizing input: Input validation must be mandatory to not have injection vulnerabilities.

Things like profiles or generally things that post back to the user what was entered in one

way or another must be heavily sanitized, as they are a prime vector of compromise. Same

goes for data sent to the server via anything: cookies, get, post, headers everything you may

or may not use from the client must be sanitized.

Other than this general coding practices like code review, penetration testing etc must be

carried out to ensure application safety.

2. Cryptographic Failures

a. Crypto Basics

Vulnerability Analysis

Hashing is the process of applying a hash function to plaintext, creating a string (hash) from which

the original text cannot be recovered.

Hash functions generally have the property that it is difficult to infer the original text from the hash.

However, by guessing the method used for hashing, it is possible to perform a dictionary attack

using a combination of known passwords and hashes, which can lead to hash cracking.

This vulnerability falls under the category of authentication risk, as weak or improperly

implemented hash functions can allow attackers to recover original passwords and impersonate

legitimate users. From a technical standpoint, this can lead to unauthorized access to critical

systems, data breaches, and privilege escalation.

Exploitation

We used online hash cracker, “CrackStation” to crack the first hash1.

1 CrackStation, https://crackstation.net/, Accessed February 1, 2025.

https://crackstation.net/

7

Fig. # CrackStation

For the second hash, unfortunately CrackStation did not work. So, we used online hash identifier2

first and detected the hash is SHA2-256 format, then used john the ripper to crack the hash.

Fig #. Hash Analyzer Fig. # John the Ripper

Mitigation

In order to avoid being a victim of hash cracking, the following three points are important:

- Do not reuse passwords: Using the same password for multiple accounts increases the

risk of cracking if one account is compromised.

- Use a salt when hashing passwords: Salting involves adding a unique random string to

each password before hashing. This makes it much harder for attackers to use pre-

computed tables of hashes (rainbow tables) to crack passwords.

2 Hash Analyzer, https://www.tunnelsup.com/hash-analyzer/, Accessed February 1, 2025.

https://www.tunnelsup.com/hash-analyzer/

8

- Use a computationally intensive hash function: Modern hashing algorithms are designed

to be slow to compute, making brute-force attacks more time-consuming and expensive

for attackers.

In order to ensure that these are implemented reliably, it is of course necessary to continuously

review them through the SDLC, but what is particularly important is to define the importance and

retention period of the data at the stage of requirements definition. Since data encryption is

basically broken if you spend time on it, the most important thing to consider when considering

an encryption method is how many years the data to be encrypted must be kept secret.

6. Identity & Auth Failure:

b. Insecure Login

Vulnerability Analysis

Encryption plays a vital role in securing communication, yet when it's missing from login

processes, user credentials become highly vulnerable to interception. In this context, if the

website sends login info in plaintext in an unencrypted manner, then this sensitive info will be

exposed to potential threats like man-in-the-middle attacks and packet sniffing. For example, the

attacker in the same network could easily intercept your username and password with sniffing

tools.

Exploitation

1. First right click on the website page and then click inspect to open the DEVELOPMENT

TOOLS.

2. Click login in to see what will happen next.

3. Locate the query to start.mc in the Network tab and click on Parameters, specifically

showing in the following image.

9

4. Finally enter the username and the password above.

Risk Categorization & Mitigation Strategy

This vulnerability presents a high risk due to its severe impact and ease of exploitation. Without

encryption protocols like TLS/SSL, login credentials are transmitted in plaintext, allowing attackers

to intercept usernames and passwords effortlessly using packet sniffers. This can lead to

unauthorized access, data breaches, and even account takeovers, posing security and business

risks. Additionally, data leaks, financial losses and even reputational damage to the organization

would also be induced.

To mitigate these risks, organizations must enforce encryption by mandating HTTPS with

TLS/SSL to secure data transmission. Multi-factor authentication (MFA) should be implemented

to add an extra layer of security, while password resets should follow strict protocols, including

strong security questions, one-time-use reset tokens, and time-limited reset links tied to the user’s

IP. Additionally, brute force attacks must be prevented through rate limiting and anomaly

detection, while email verification processes should avoid revealing whether an account exists.

Security Touchpoints

First, threat modeling would have caught the risk of sending credentials in plaintext right from the

start. Secure coding practices—like enforcing HTTPS by default—would have ensured encryption

was in place from day one. Then, automated security scanning would’ve flagged any insecure

data transmission before the system even went live.

Even if something slipped through, penetration testing (basically ethical hacking) would have

exposed the flaw before attackers could exploit it. Code reviews should have caught missing

encryption, and once everything was up and running, logging and monitoring would’ve helped

detect any suspicious login attempts in real-time.

d. Password Reset

Vulnerability Analysis

Weak password reset mechanisms can introduce serious security risks, often leading to account

takeovers and data breaches. One of the most critical flaws is sending passwords via email in

plaintext, which not only exposes them to interception but also suggests that the website stores

passwords insecurely. If an attacker gains access to a user’s email, they can easily retrieve

credentials and access accounts without additional verification.

Beyond plaintext transmission, poorly designed reset processes—such as predictable security

questions or lack of restrictions on reset attempts—make it easier for attackers to exploit these

10

vulnerabilities. Without proper safeguards, a weak password reset system can become the

easiest entry point for unauthorized access.

Exploitation

Subtask: Email functionality with WebWolf

1. Login in WebWolf.

2. Log in with your username and select "forgot your password".

3. Then a message with the reseted password will appear in WebWolf, go back to WebGoat

and type the password from your user.

Subtask: Find out if the account exists

1. If the user exists we will see the following messages: "Sorry the solution is not correct,

please try again".

2. After trying “Tom” and “purple”, got messages like below.

Subtask: The Problem with Security Questions

1. First try to send a password reset link to your own account and you will see a unique code

for this link.

2. ThenTurn on the interceptor in BurpSuite. Then submit the reset password request for

Tom’s emails, and then check WebWolf and you will see the link below.

11

3. Copy the unique code and replace the same part in your password reset link.

4. Finally reset the password of Tom and login in with Tom account.

Risk Categorization & Mitigation Strategy

This vulnerability poses a high risk due to its potential for exploitation and severe consequences.

When websites send passwords via email in plaintext, they expose user credentials to

interception, making it easy for attackers to access accounts if an email is compromised. More

concerning is the implication that these passwords are stored in plaintext, turning the database

into a prime target for breaches.

To eliminate this risk, applications must never store or send passwords in plaintext. Instead, they

should use strong cryptographic hashing algorithms like bcrypt, Argon2, or PBKDF2 to securely

store credentials. Password reset mechanisms should rely on time-limited, one-time-use reset

links sent via email rather than transmitting actual passwords. Additionally, these reset links

should be tied to the user’s IP and require additional authentication steps, such as MFA.

Security Touchpoints

If security had been built into the development process from the start, this vulnerability wouldn’t

have been an issue. Early on, threat modeling would have flagged the risk of sending passwords

in plaintext, giving developers a chance to address it before any code was written. Following

secure coding practices would have ensured that passwords were stored safely using encryption

instead of being left exposed.

Before the system even went live, automated security scans could have caught weak password

handling, while penetration testing would have revealed how attackers might exploit it. Code

reviews should have picked up any insecure reset mechanisms before they made it to production.

Once everything was running, logging and monitoring would have helped detect suspicious

password reset attempts or credential leaks.

12

e. Secure Passwords

Vulnerability Analysis

Setting a password is a crucial element in the authentication process. If your password is too short

or easily guessable, like "password", attackers can easily crack it and gain unauthorized access

to your system.

This vulnerability falls under the category of authentication risk, as weak passwords can be easily

guessed or brute-forced, leading to unauthorized access. From a business perspective,

compromised accounts can result in data breaches, operational disruptions, financial losses, and

regulatory penalties due to non-compliance with security standards such as NIST, PCI DSS, and

GDPR.

Exploitation

Attackers often use methods like brute-force attacks, rainbow table attacks, or password spraying

to try and guess passwords.

Mitigation

The most recommended defense is multi-factor authentication. While passwords fall under "What

you know", multi-factor authentication adds "What you have" (like a code from your phone) or

"Who you are" (like a fingerprint) to the authentication process. This makes it much harder for

attackers to break in, even if they have your password.

Other simpler methods include limiting the number of password attempts or using CAPTCHA to

prevent automated attacks. You can also enforce strong password policies, requiring passwords

to be at least 8 characters long and include a mix of uppercase letters, lowercase letters, special

characters, and numbers.

Since the setting of password policies is a relatively flexible item, it is important to verify that it will

not be broken in the penetration test at the testing stage, on the premise that it is designed in

accordance with documents such as NIST SP800-63B.

13

Insecure Deserialization

Vulnerability Analysis

Insecure deserialization is a vulnerability that occurs when applications deserialize data from

untrusted sources without proper validation. When an application converts serialized data (like

JSON, XML, or binary formats) back into objects, attackers can manipulate this data to include

malicious code or objects that, once deserialized, can trigger unintended functionality or code

execution. This vulnerability allows attackers to modify application logic, perform denial-of-service

attacks, or even execute arbitrary code on the server. It's particularly dangerous because the

attack occurs during a fundamental operation that many applications perform routinely.

Exploitation

The attack begins with cloning the source code of the WebGoat OWASP project from its host

repository on github. The next steps require the attacker to scour the /deserialization folder in the

/lessons directory, and observe the insecurely implemented java code that is supposed to perform

serialization and deserialization. Once the VulnerableTaskHolder.java file is created and

populated with definitions and functions, there must be another class program to run the attack.

The goal of Attack.java is to create an object of VulnerableClassHolder using attacker-controlled

input parameters that halt the application for exactly five seconds.

After the classes VulnerableTaskHolder and Attack are defined, the next step is to compile the

Attack code so it can be run by the java virtualization environment. Executing the Attack program

produces an output in serialized (base64 encoded) format that can be validated by the WebGoat

task for Insecure Deserialization.

14

The WebGoat application verifies that the task was successfully completed. The page response

was indeed delayed by exactly 5 seconds per the serialized input.

Using the cat command to display the contents of the Attack.java can be seen above. A simple

program instantiates a VulnerableTaskHolder object into memory using two arguments to create

a delay in the page response. The object is then written to an output stream and its encoded

format is printed to the terminal.

Risk Categorization, Mitigation Strategy, & Security Touchpoints

I would classify insecure deserialization as a high-risk vulnerability. It has severe potential impact

(allowing remote code execution in many cases) combined with widespread prevalence across

different technologies and frameworks. OWASP consistently ranks it among the top 10 web

application security risks because exploitation often leads to complete system compromise, and

detection can be challenging during code reviews or automated scanning.

Mitigation strategies for insecure deserialization include implementing integrity checks with digital

signatures, using safer serialization formats like JSON, enforcing strict type constraints, applying

whitelist-based filtering, running deserialization in low-privilege environments, and monitoring

deserialization operations for anomalies. Within the Seven Touchpoints model, this vulnerability

would primarily be addressed during Code Review (Touchpoint 3), where security-focused

reviews would identify unsafe deserialization practices before deployment. Risk Analysis

(Touchpoint 1) would identify serialization/deserialization of untrusted data as high-risk areas,

while Penetration Testing (Touchpoint 6) would help identify existing vulnerabilities through

controlled exploitation attempts. Security Requirements (Touchpoint 2) would establish safe

serialization practices early in development. Code Review remains the most effective touchpoint

as it enables systematic identification of unsafe patterns when fixes are less costly.

15

Server Side Request Forgery

Vulnerability Analysis

Server-Side Request Forgery (SSRF) is a vulnerability that allows attackers to induce server-side

applications to make requests to unintended locations. By manipulating URLs or parameters that

the server uses to fetch resources, attackers can force the server to connect to internal services

behind firewalls, access restricted areas, or interact with external systems. This vulnerability

essentially turns the vulnerable server into a proxy that can reach otherwise inaccessible

resources, potentially exposing sensitive data, enabling port scanning of internal networks, or

facilitating further attacks against backend systems that trust the compromised server.

Exploitation

a. Tom & Jerry File Access Manipulation

The attack beings by intercepting the traffic from a client requesting server resources on a

vulnerable protocol, achieved through a proxy, a.k.a Machine-in-the-Middle (MitM) attack. The

HTTP POST request references the url (uniform resource link) to an image residing on the host

server (see tom.png).

Once the traffic is intercepted by any tool, in this case Burpsuite, we can redirect the server url

request to a file of our choice, such as jerry.png. The Repeater tool in Burpsuite allows us to

resend the traffic to the requesting client with the modified data.

16

Hence, the before and after images of tom and jerry appear on the WebGoat application. The

task has been completed to display a modified file url requested from the server. Confirmation is

verified through the HTTP 200 OK status code.

b. Download Another Resource’s Content (IP Redirect)

The attack beings by again intercepting the traffic in between requesting client and the server

hosting content. This time, the url points to a domain name under the attacker’s control, which

can be used to fool users into trusting the new server content. Malicious content may now be

served.

17

Instead of attacking the WebGoat application using Burpsuite, this attack is demonstrated using

the command line terminal interface with the curl command. Curl is used to copy the url from an

available Internet resource. The User-Agent string is copied as the requesting Mozilla client and

the same cookie (assumed to be stolen) from the WebGoat session is used to target the local

machine interface 127.0.0.1 on port 8080. The POST data is deliberately injected with the “--data”

switch pointing to another server residing at domain ifconfig.pro.

Risk Categorization, Mitigation Strategy, & Security Touchpoints

18

I would classify Server-Side Request Forgery (SSRF) as a high-risk vulnerability. It can lead to

unauthorized access to internal services, data exposure from cloud metadata endpoints, potential

remote code execution through internal system compromise, and often bypasses network security

controls by leveraging the trusted position of the vulnerable server. Additionally, modern cloud

architectures have increased the impact of SSRF attacks by providing access to instance

metadata services that can expose sensitive credentials and configuration information.

Mitigation strategies for SSRF include implementing strict URL validation with allowlists for

permitted domains and protocols, using indirect object references instead of direct resource

identifiers, deploying network-level protections like segregating application servers from sensitive

internal services, disabling unused protocols, setting connection timeouts, implementing proper

authentication for internal services, and monitoring outgoing requests for anomalous patterns. In

the Seven Touchpoints model, SSRF vulnerabilities would primarily be addressed through Code

Review (Touchpoint 3) by identifying unsafe URL handling and request patterns, Risk Analysis

(Touchpoint 1) by mapping potential attack vectors in the application's request flow, and Security

Requirements (Touchpoint 2) by establishing secure URL handling practices early in

development. Additional protection would come from Architecture Analysis (Touchpoint 4) by

designing proper network segmentation, and Security Testing (Touchpoint 5) by specifically

crafting tests to detect SSRF vulnerabilities. Code Review remains particularly effective because

it can systematically identify unsafe request handling patterns before deployment, when

remediation is less costly, while Security Requirements would prevent the introduction of

vulnerable patterns by establishing proper validation controls from the start.

Cross-Site Scripting (XSS)

Exploitation

1. Reflected XSS

In the reflected XSS Attack, we can inspect element in the console and find out that the field

accepts text values. This allows us to input commands such as:

 “4128 3214 0002 1999 "><script>alert(RXSS)</script>

This generates alerts, which are not very useful, but show the importance of input sanitization.

2. DOM-Based XSS

Identification

For this exploit, we first identify the potential for DOM-based XSS attacks. The ‘base route’ is

given, we need to find the test route. For this, we navigate to the debugger tab on console tools.

The file pathway is: Webgoat/js > goatAPP > view > GoatRouter.js. In this file, we can discover

19

the routes used during testing that managed to stay in the app during production. We find

‘test/ :param’ : ‘testRoute’, in the debugger. Incorporating the test route into the base route, we

get start.mvc#test/ as the correct command.

Using the earlier command, we can incorporate it into the URL like so:

http://127.0.0.1:8080/WebGoat/start.mvc#test/<script>webgoat.customjs.phoneHome();<%2fscr

ipt>. This takes us to a new tab, where we can use the console to output the correct

phonehome response.

Risk Categorization

The risk categorization for XSS vulnerabilities would be high. This is particularly due to the host

of impacts that it could have. Attackers could gain access from session hijacking, they could

also steal sensitive information such as cookies, usernames, passwords. There could also be

potential for malwasre injection and phishing attacks. Finally, the could use these vulnerabilities

for conducting unathorized actions from a user. The high category of risk is due to the

reputational and legal liabilities that can arise from potential data breaches. The ease of

exploitation also remains high, if input sanitization is missing.

Mitigation Strategies

First and foremost, input validation and sanitization is key. As demonstrated earlier, allowing

text input for a field that should only have numbers, allows us to run and generate scripts by

entering commands for an alert. Next, we want to ensure that we encode all output before

rendering in the browser. This can be done by either ensuring we Convert < to <, > to >,

and " to " or using escape characters in dynamic scripts with libraries like DOMPurify. We

http://127.0.0.1:8080/WebGoat/start.mvc#test/
https://github.com/cure53/DOMPurify

20

can also ensure we use flags such as ‘HttpOnly’ and ‘Secure’ to prevent client-side scripts from

using cookies.

Security Touchpoints

Identifying Abuse Cases would help us understand how exactly a malicious actor can behave,

allowing us to move on to Risk Management. In this phase, we can organize the risks by

priority, and remediate the high or critical level vulnerabilities first - ones that directly violate PII

or financial information. Next, we can conduct periodic code reviews for each stage in the

development cycle, this will help us start conversations between the security and dev teams.

Finally, conducting penetration testing will help us get an idea of what is the possible extent of

error handling, and what data can be used to aggregate other types of information. As part of

security operations, we can also set up logging & monitoring mechanisms and default incident

response plans. These will help us recognize anomalous scripts and input patterns, and have a

pre-planned approach for dealing with similar issues.

Path Traversal

Vulnerability Assessment

Path traversal allows attackers to manipulate file paths and access files and directories outside

of the intended directory of use. They can use this to gain access to sensitive or critical files :

configuration files, system files, and confidential user data are all at risk. Common targets are

/etc/passwd, /etc/shadow, config.php, .env files. This has the potential to affect every aspect of

the CIA triad, making any application that allows this attack - an insecure application.

Exploitation

Exploitting the intial stages of the application is relatively easy, we start by adding ‘../’ and ‘….//’

to the input fields for the username. Next, we can go one step further by interceptring traffic

using burpsuite, and entering ../ just before the filename. For retrieving other files from the

system, we intercept traffic using burpsuite, and open the repeated tab. In this tab, we add id

= ../, but we get an error. To solve this, we can use the decoder to find the hex values of the

command, and use it with the function along with the earlier given path-traversal-secret.jpg

filepath.

21

Risk Categorization

This vulnerability can be categorized as critical. This is because of a severe violation of the CIA

triad, along with high risks of potential impact. Attackers can gain sensitive files and

configuration data. They can also expose database credentials, API keys, or other sensitive

information. There is also a potential for remote code execution, by modifying config files.

Finally, attackerrs can also conduct a denial of service DoS attack by deleting or corrupting

system files.

Mitigation Strategy

Input validation is again a recurring theme that would help us here as well. Using a whitelisting

approach would only allows specific files or extensions. We can setup parameters to reject any

input that contains ‘../’ or ‘%2e%2e%2f’ or other traversal characters that are encoded. We can

also implement containerization, and avoid userinput in filepaths. We can implement access

controls for any web applications asking for access to system-critical directories like /usr/bin, or

C:\Windows\. Using secure libraries like express-validator in Node.js can help with their features

of built-in traversal protection.

Security Touchpoints

Threat modeling would have identified the risk of directory traversal by mapping out how user

input is handled in file paths. Secure coding practices, including strict input validation and output

encoding, would have blocked traversal characters like ../. Automated security scanning

integrated into the CI/CD pipeline would have flagged unsafe file handling functions before

deployment. Penetration testing with tools like Burp Suite would have exposed the flaw using

encoded payloads, simulating real-world attacks. Regular code reviews focusing on user input

and file operations would have caught unsanitized inputs early in development.

https://express-validator.github.io/docs/

