FINAL PROJECT

95-748: SOFTWARE AND SECURITY

Stefan Andreev, Adarsh Rai, Devan Rajendran
Akihiro Sunagawa, Changwei Yao

1. Broken access controls
a. Hijack a session
Vulnerability Analysis
Exploitation
Mitigation
Security Touchpoints
d. Spoofing an authentication cookie
Vulnerability Analysis
Exploitation
Mitigation
Security Touchpoints
2. Cryptographic Failures
a. Crypto Basics
Vulnerability Analysis
Exploitation
Mitigation
6. Identity & Auth Failure:
b. Insecure Login
Vulnerability Analysis
Exploitation

Risk Categorization & Mitigation Strategy

Security Touchpoints
d. Password Reset

Vulnerability Analysis

Exploitation

Subtask: Email functionality with WebWolf

Subtask: Find out if the account exists

Subtask: The Problem with Security Questions
Risk Categorization & Mitigation Strategy

Security Touchpoints
e. Secure Passwords
Vulnerability Analysis
Exploitation
Mitigation
Cross-Site Scripting (XSS)
1. Reflected XSS
2. DOM-Based XSS
Risk Categorization
Mitigation Strategies
Security Touchpoints
Path Traversal
Vulnerability Assessment

© © © © © O NN NNODOWWWWDNPEFRFP PP

N NNNMNNRRPRRPRRPRPRPRPRRRRPRPRERRERRERRR
P PP OO O©©O©OWWWWMNNRRPRRLRROODO

Exploitation

Risk Categorization
Mitigation Strategy
Security Touchpoints

21
22
22
21

1. Broken access controls

a. Hijack a session
Vulnerability Analysis

Session hijacking refers to the malicious act of taking control of a user’'s web session. A session,
in the context of web browsing, is a series of interactions between two communication endpoints,
sharing a unigue session token to ensure continuity and security.

Exploitation

We used burpsuite to intercept the traffic flowing out of our webgoat local server. Using the proxy
tab we were able to catch and intercept the POST request for hijacking the session -

quest Response

17.. HTTP 3 Request GET ht[p 1127.0.0.1:8080/WebGoal/service/lessonaverview.mvc =@ v =
17... HTTP 3 Request POST https:fwww youtube.com/youtubeiivi/log_event?alt=json 1
17.. HITP 3 Request GET http://127.0.0.1:8080/WebGoat/service/lessonmenu.mve . : 1
;! .. HTTP 3 Request GET http://127.0.0.1:8080/WebGoat/senvice/lessonoverview. mvc
1&511517,,. HTTP 3 Request FOST http://127.0.0.1:8080/WebGoat/Hijacksession/login
18:57:1717... HTTP 3 Request GET http://1)g.0.0.1:8080/WebGoat/service/lessonmenu.mve
1857:1817... HTTP & Request GET http://127.0.0.1:8080/WebGoat/service/lessonaverview.mvc
18571917 ... HTTP 3 Request GET http://127.0.0.1:8080/WebGoat/service/lessonmenu.mve
18:57:2017... HTTP 9 Request GET .0.1:8080/WebGoat/service/lessonoverview.mvc

18:57:2017 ... HTTP + Request POST https:Mhwww youtube.com/youtubei/vi/log_event?alt=json

1857:2217... HTTP 3 Request GET 0.1:8080/WebGoat/service/lessonmenu.mvc

1857:2317... HTTP 3 Request GET 0.1:8080/WebGoal/service/lessonaverview. mve B G
1857:2417... HTTP 3 Request poST

1857:2417... HTTP 3 Request GET 0.1:8080/WebGoat/service/lessonmenu mve

18:57:2517... HTTP & Request GET hetpi//127.0.0.1:8080/WebGoat/service/lessonoverview. mvc

18572717 HTTP 3 Reauest GFT hit /127 0.0 1-B080/WebGoal /<enicellessanmen mur

This request was then sent to the repeater to hit the URL with different contents in the request
header.

The Hijack cookie value within the Cookie header was removed and the request was sent multiple

times. Then the response indicated a set cookie parameter that involved a hijack cookie value.

This value took the following values on repeatedly hitting the request -
hijack_cookie=6555298682291525389-1739834399160

Set-Cookie: hijack_cookie=6555298682291525431-1739836661795;
Set-Cookie: hijack_cookie=6555298682291525432-1739836680694;

Set-Cookie: hijack_cookie=6555298682291525433-1739836689656;
Set-Cookie: hijack_cookie=6555298682291525435-1739836702455;
Set-Cookie: hijack_cookie=6555298682291525436-1739836715379;

As you can see the first half of hijack cookie value seemed to be increasing uniformly with each
request. The second half of the hijack cookie seems to be a timestamp of sorts.

To try and sign on with the required user, we need to find the value of the hijack cookie that lets
the server form a trust with your request and then signs you on. The screenshot shows a missing
value of hijack cookie that ends with 434. You can use this value and iterate the second half from
6661795 till 715379 using the intruder option within burpsuite as shown below-

Positions Add § Clear § Auto§ Request count: 12,800

C

POST /WebGoat /HijackSession/legin HTTP/1.1 Payload configuration

2 Host: 127.0.0.1:8080 4
User-Agent: Mozilla/5.0 (X11: Linux xB6_64 rvi128,) Gecko/20100101 Firefox/128.0 8

4 Accept: ¥/¢ - This payload type generates numeric payloads within a given range and ina specified 5
Accept-Language: en-US,en;q=0.5 ormat. »
Accept -Encoding: gzip, deflate, br ’é
Content -Type: application/x-www-forn-urlencoded: charset=UTF-8 Number range 2
X-Requested-With: XMLHttpRequest

) Content-Length: 38 Type: ® sequential Random

10 Origin: http://127.0.0.1:8080
Connection: kesp-alive From 680654 @
Referer: http://127.0.0,1:8080/WebGoat/start .mvciusername=averty
Cockie: JSi Smp A hijack_cookie= T 102455 i
5555298682291 525434 - 17 s =

14 Sec-Fetch-Dest: empty o=t ! &

15 Sec-Fetch-Mode: cors How many:
Sec-Fetch-Site: same-origin
Priority: us=0
Number format
) username=asdfgasdfipassword=sdfsdfsadf
Base: @ Decimal Hex

Min integer digits:

Maxinteger digits: 6

Upon running this script, you can see that for a particular value of 689657 you get a positive
response from the server with 439 characters which says that you were successfully able to sign
in to the system using the derived hijack cookie value.

This means that you were successfully able to hijack into the session and upon refreshing the
page you can be seen to be logged in and the challenge is completed on webgoat.

=
Request Payload Status code Response received Error Timeout Length Comment E_
&
0 200 67 125
1 689656 200 8 325
[2 BB9E5T 200 439 336 |
3 GBOG5E 200 35 15)
4 689659 200 13 325
5 689660 200 19 35 ?
6 689661 200 58 325 g
7 6BOBE2 200 10 325 -
e
Request Respgnse H §
Pretty Raw Hex ® w o= |
1 HTTR/1.1 200 OK
Connection: keep-alive &
Content-Type: application/json
) Date: Tue, 18 Feb 2025 00:11:10 GMT "
Content-Length: 203 2
2
{ b
"lessonCompleted” :true,
L L) R min hmus siseseedll ramel adad dha sesdanmans o

Mitigation

Some mitigation strategies are following basic security practices such as avoiding public Wi-Fi for
sensitive transactions, using VPNs, and keeping software up to date. It’s also important for users
to be aware of phishing tactics and to understand the importance of logging out of sessions,
especially on shared computers.

Security Touchpoints

Implement strong session management mechanisms: This involves using securely generated,
random session tokens that are difficult to predict, enforcing short session timeouts to minimize
the risk window, and ensuring automatic session invalidation upon logout or inactivity.

Secure coding practices: Proper input validation and sanitization, along with setting HTTPOnly
and Secure flags on cookies help mitigate vulnerabilities like cross-site scripting (XSS).

Using Multi-Factor Authentication (MFA): This adds an extra layer of security by requiring users
to verify their identity through an additional factor, such as a one-time passcode or biometric

authentication. Even if an attacker compromises a session token, MFA ensures that they cannot
gain full access without the second authentication factor.

d. Spoofing an authentication cookie

Vulnerability Analysis

Spoofing and authentication cookie involves modifying the authentication cookie in a request so
that the server automatically authenticates the request thinking that it is coming from a legitimate
source.

Exploitation

For this we have used the same methodology as before, where we used Burpsuite to intercept
the request to understand how authentication cookies work on webgoat, find a pattern and exploit
the pattern for a particular user that is provided.

Lets try decoding and understanding what authentication cookie is being generated upon signing
in with credentials - webgoat and admin for both user and password.

We started by intercepting the request and sending it to the repeater to modify the request and
hit it from burpsuite.

For username = admin and password = admin we have -

m C) Target: http://127.0.01:8080 &2 Hrieh ()
== Inspector «D) I - @ X .

Request Response
Pretty w Hex = n = Pretty Raw Hex n = Request attributes g
HTTP/1.1 200 OK o
Connection: k live Request query parameters §

rvi128,0) Set -Cookie:

*N) gOY) YxNDQ2ND
Accep Versionsl; Paths/

i Y ont; Discard; Secure Request body parameters 2 v
Accept -Language: en-US, en;qe0, & I | Content-Type: appl

tion/json

Accept-Encoding: gzip, deflate, br Date: Tue, 18 Feb 2025 01:23:10 GMT Reguestcookies ®
Content-Type: application/x-www-form-urlencoded; Content-Length: 291 z
charset=UTF-8 2
X-Requested-With: XMLHttpRequest { Request headers 16 ®

Content-Length: 33

*lessonCompleted”: false,
Origin: htt !
Go

onse header
ng credentia ookie created, see below Response headers

namesqwerty 1 "output®
BXj GaxXndpBsPa Cookie details for user webgoat:<br poof_auth=Njg
) Y3 YXNDQ2NDQZNTc 10TdhNTk SNDYxNmY 2Nz Yy Nj USNwss= ",

hijack_:

1 Sec-Fetch-Dest: empty 1 “assignment*: “SpoofC kieAssignment "
Sec-Fetch-Mode: cors 1 *attemptiasMade” : false
Sec-Fetch-Site: same-origin 14 ¥

Priority: u=0

usernameswebgoat &passwordewebgoat

For username = admin and password = admin we have the following cookie generated -

"Cookie details for user admin:<br \\/>spoof_auth=NjgOY
7 YXNDQ2NDQzNTc10TdhNTk ZZTYSNInQZNDYxl' ;

"assignment": "SpoofCookieAssignment”,

"attemptwWasMade" ; false

This has to be translated from base 64 to url-8 first and this could be done in an online base64
converter -

Decode from Base64 format

Simply enter your data then push the decode button

NjgOYj¥xNDQ2ZNDQzNTc1OTAhNTK3NDYXNmMY 2Nz YyNjU3Nw==

© For encoded binaries (like images, documents, etc.) use the file upload form a little further down on this page
UTF-8 ~ Source character set.
Decode each line separately (useful for when you have multiple entries).

@ Live mode OFF Decodes in real-time as you type or paste (supports only the UTF-B character sef).

{ DECCDE 2> Decodes your data into the area below.

684b6144644357597a5974616f67626577

Cookie for username&password = webgoat

Decode from Base64 format

Simply enter your data then push the decode button

NjgOYjYxNDQZNDQZNTC1OTAhNTK2ZTYSNmMQ2ND Yx

@ For encoded binarles (like images, documents, etc.) use the file upload form a little further down on this page.
UTF-8 « Source character set,
Decode each line separately (useful for when you have multiple entries).

@ Liwemode OFF Decodes in reak-time as you type or paste (Ssupports only the UTF-8 character set).

DO s | =ole o[- A Decodes your data into the area below.

684b6144644357597 aTS‘.ISeBQSdeE 1

Cookie for usernameé&password = admin

This value can then further be translated and decoded from UTF-8 (Hex) to text using another
online tool -

varpre

Enter the hexadecimal text to decode 9 o 8§]
684b6144644357597a5974616f67626577 1 Sampie
684b61446443575973596e696d6461

Size : 34 B, 34 Characters Size : 30 B, 30 Characters

‘ . & Auto * File. @ Load URL
[TN 4 Hex to String tFile. e LoadURL
The Converted string: o)

The Converted string a

hKaRACWY:zYtaogbew

hKaDdCWYzYnimda

Sample

AQVbrWXULWmoT

Size : 13 B, 13 Character:

1@ Auto * File.. e Load URL

The encaded string: o

As you can see, the converted string reads AQybrwWXULWnimda and AQybrWwXULWtaogbew
which has the words admin and webgoat reversed and attached at the end of a string. This means
that authentication cookies are being created by having a fixed string “AQybrWXULW” followed
by a reversed string for the user id.

To spoof an authentication cookie for the user “Tom” we will need to encode the string -
“‘AQybrWXULWmot” to hex and then base64.

Then encoding this to base 64 -
Adding a value called spoof_auth into the cookie header in the request and hitting the request as

shown below, we were able to log into Tom’s account using authentication cookie spoofing. This
shows that we were successfully able to log into toms account -

I—
© To encode binaries (like images, documents, etc.) use the file upload form a litt a
N uest Response
P
Prets Raw er ® " = Pret aw ex '
UTF-8 v Destination character set. i A s e il Sl M, o
1 POST /WebGoat/SpoofCookie/lagin HTTP/1.1 1 HITP/1,1 200 O
=) 2 Host: 127.0.0.1:8080 2 Connection: keep-alive
LF (Unix) v Destination newline separator. User-Agent: Mozilla/.0 (X11: Linux x86_64; rvi128.0) Content -Type: application/json
Gecko/20100101 Firefox/128.0 y Date: Tue, 18 Feb 2025 02:00:10 GMT
1 Accept: V/4 Content -Length: 201
Encode each line separately (useful for when you have multiple entries) 5 Accept-Language: en-US,en:qe0.5
Accept-Encoding: gzip, deflate, br 7| {
7 Content-Type: application/x-ww-fora-urlencoded “LessonConpleted” t
Split ines Into 76 character wide chunks (useful for MIME). haretiirey T ewan/ysTormeUFtancece e kit
hi XMLHttpRequest L ations, You have successfully completed t
) 29 ss1 :
Perform URL-safe encoding (uses Base64URL format) 10 Origini http://127.0.0.1:8080 N "oul ull,
g e 1 *assagnnent* : *SpoofCookieAssignment *,

¥ 2 Refer *attenptWasade* true
@ Live mode OFF Encodes in real-time as you type or paste (supports onl'= ' 27.0,0.118080/WebGont /start :ave Tusernanssaverty
U IRE

Cookie! JSESSIONID=UoOL BXj GaxndpBsPa;

spoof_auth=NOELMTCSN] I
b =\ [ole]n) BRI Encodes your data into the area below. 4 Sec-Felch-Dest: empty
Sec-Fetch-Mode: cors

16 Sec-Fetch-Site: same-origin
17 Priority: us0

NDE1MTCSN|I3MJUSNTgINTRINTc2ZDZmNTQ=

) username=adeinbpassvordsadein

Mitigation

Preventing attackers from tampering with cookies through practices like strong encryption for
authentication cookies making it harder for the attackers to find patterns and decrypt them. This
can also involve periodically regenerating session IDs after successful authentication to minimize
the risk of session fixation attacks.Other mitigation strategies involve using a password manager
and always log in using sites with HTTPS.

Security Touchpoints
To prevent this from a software security standpoint, here are some suggestions -

Sanitizing input: Input validation must be mandatory to not have injection vulnerabilities.
Things like profiles or generally things that post back to the user what was entered in one
way or another must be heavily sanitized, as they are a prime vector of compromise. Same
goes for data sent to the server via anything: cookies, get, post, headers everything you may
or may not use from the client must be sanitized.

Other than this general coding practices like code review, penetration testing etc must be
carried out to ensure application safety.

2. Cryptographic Failures

a. Crypto Basics

Vulnerability Analysis

Hashing is the process of applying a hash function to plaintext, creating a string (hash) from which
the original text cannot be recovered.

Hash functions generally have the property that it is difficult to infer the original text from the hash.
However, by guessing the method used for hashing, it is possible to perform a dictionary attack
using a combination of known passwords and hashes, which can lead to hash cracking.

This vulnerability falls under the category of authentication risk, as weak or improperly
implemented hash functions can allow attackers to recover original passwords and impersonate
legitimate users. From a technical standpoint, this can lead to unauthorized access to critical
systems, data breaches, and privilege escalation.

Exploitation

We used online hash cracker, “CrackStation” to crack the first hash?.

! CrackStation, https://crackstation.net/, Accessed February 1, 2025.

https://crackstation.net/

Enter up to 20 non-salted hashes, one per line:

E10ADC3949BAS9ABBE S6EQ57F 20F 883E

B casant

Supports: LM, NTLM, md2, md4, mds, mdS(mdS_hex), mdS-half, shal, sha224, sha256, sha3g4, sha512, ripeMD160, whirlpool, MySQL 4.1+ (shal(shal_bin)),
Qubesv3.1BackupDefaults

Hash Type Result

Fig. # CrackStation
For the second hash, unfortunately CrackStation did not work. So, we used online hash identifier?
first and detected the hash is SHA2-256 format, then used john the ripper to crack the hash.

Articles Tools Cheat Sheets Videos Shop

Hash Analyzer

Tool to identify hash types. Enter a hash to be identified.

5E884898DA28047151D0OES6F8DC6292773603D0ODEAABBDD62A11EF721D1542D8

—

Hash: 5E884898DA28047151D0E56F8DC6292773603DOD6AAB
BDD62A11EF721D1542D8

Salt: Not Found

Hash type: SHA2-256

Bit length: 256

Character length: 64

Character type: hexidecimal

Fig #. Hash Analyzer Fig. # John the Ripper

Mitigation

In order to avoid being a victim of hash cracking, the following three points are important:
- Do not reuse passwords: Using the same password for multiple accounts increases the
risk of cracking if one account is compromised.
- Use a salt when hashing passwords: Salting involves adding a unique random string to
each password before hashing. This makes it much harder for attackers to use pre-
computed tables of hashes (rainbow tables) to crack passwords.

2 Hash Analyzer, https://www.tunnelsup.com/hash-analyzer/, Accessed February 1, 2025.

https://www.tunnelsup.com/hash-analyzer/

- Use a computationally intensive hash function: Modern hashing algorithms are designed
to be slow to compute, making brute-force attacks more time-consuming and expensive
for attackers.

In order to ensure that these are implemented reliably, it is of course necessary to continuously
review them through the SDLC, but what is particularly important is to define the importance and
retention period of the data at the stage of requirements definition. Since data encryption is
basically broken if you spend time on it, the most important thing to consider when considering
an encryption method is how many years the data to be encrypted must be kept secret.

6. Identity & Auth Failure:

b. Insecure Login

Vulnerability Analysis

Encryption plays a vital role in securing communication, yet when it's missing from login
processes, user credentials become highly vulnerable to interception. In this context, if the
website sends login info in plaintext in an unencrypted manner, then this sensitive info will be
exposed to potential threats like man-in-the-middle attacks and packet sniffing. For example, the
attacker in the same network could easily intercept your username and password with sniffing
tools.

Exploitation
1. First right click on the website page and then click inspect to open the DEVELOPMENT
TOOLS.

2. Click login in to see what will happen next.
3. Locate the query to start.mc in the Network tab and click on Parameters, specifically
showing in the following image.

(AS5) Security Misconfiguration
(A6) Vuln & Outdated Components Let's try

(A7) identity & Auth Failure Click the "log in” butto
(A8) Software & Data Integrity :

(A9) Security Logging Failures ‘Lq =
(A10) Server-side Request Forgery .
Client side

Sut
Challenges

Congratulations. You have successfully completed the assignme , - .

] Highlight All [[] Match Case [[] Match Diacritic

ger 1 Network {} StleEditor () Performance £ Memory st sername: (aptainJa

A sse
®
o
ey
oo}
m
m
&m
oc)
2oc}
@

& 127.0.0.1:8080

4. Finally enter the username and the password above.

Risk Categorization & Mitigation Strategy

This vulnerability presents a high risk due to its severe impact and ease of exploitation. Without
encryption protocols like TLS/SSL, login credentials are transmitted in plaintext, allowing attackers
to intercept usernames and passwords effortlessly using packet sniffers. This can lead to
unauthorized access, data breaches, and even account takeovers, posing security and business
risks. Additionally, data leaks, financial losses and even reputational damage to the organization
would also be induced.

To mitigate these risks, organizations must enforce encryption by mandating HTTPS with
TLS/SSL to secure data transmission. Multi-factor authentication (MFA) should be implemented
to add an extra layer of security, while password resets should follow strict protocols, including
strong security questions, one-time-use reset tokens, and time-limited reset links tied to the user’'s
IP. Additionally, brute force attacks must be prevented through rate limiting and anomaly
detection, while email verification processes should avoid revealing whether an account exists.

Security Touchpoints

First, threat modeling would have caught the risk of sending credentials in plaintext right from the
start. Secure coding practices—like enforcing HTTPS by default—would have ensured encryption
was in place from day one. Then, automated security scanning would’'ve flagged any insecure
data transmission before the system even went live.

Even if something slipped through, penetration testing (basically ethical hacking) would have
exposed the flaw before attackers could exploit it. Code reviews should have caught missing
encryption, and once everything was up and running, logging and monitoring would’ve helped
detect any suspicious login attempts in real-time.

d. Password Reset

Vulnerability Analysis

Weak password reset mechanisms can introduce serious security risks, often leading to account
takeovers and data breaches. One of the most critical flaws is sending passwords via email in
plaintext, which not only exposes them to interception but also suggests that the website stores
passwords insecurely. If an attacker gains access to a user's email, they can easily retrieve
credentials and access accounts without additional verification.

Beyond plaintext transmission, poorly designed reset processes—such as predictable security
guestions or lack of restrictions on reset attempts—make it easier for attackers to exploit these

vulnerabilities. Without proper safeguards, a weak password reset system can become the
easiest entry point for unauthorized access.

Exploitation

Subtask: Email functionality with WebWolf

is mailbox

can be anything

EONBOSE Primary

1 Inbox web t Simple e-mail assignment

Simple e-mail assignment webgoat@owasp.org

Thanks for resetting your password, your new pas

1. Login in WebWolf.

2. Log in with your username and select "forgot your password".

3. Then a message with the reseted password will appear in WebWolf, go back to WebGoat
and type the password from your user.

Subtask: Find out if the account exists

1. If the user exists we will see the following messages: "Sorry the solution is not correct,
please try again".
2. After trying “Tom” and *

‘purple”, got messages like below.

What is your favorite color?

Submit

Congratulations. You have successfully completed the assignment.

Subtask: The Problem with Security Questions

1. Firsttry to send a password reset link to your own account and you will see a unique code
for this link.

2. ThenTurn on the interceptor in BurpSuite. Then submit the reset password request for
Tom’s emails, and then check WebWolf and you will see the link below.

10

{
"timestamp" : "2025-02-11T16:07:18.101328510Z",
"request" : {
"uri" : "http://127.0.0.1:9090/WebWolf/PasswordReset/reset/reset-password/d39097b2-5d77-4bba-a973-2dc3170f4a06",
"remoteAddress" : null,
"method" : "GET",
"headers" : {
"Accept" : ["application/json, application/*+json"],
"Connection" : ["keep-alive"],
"User-Agent" : ["Java/21.0.1"]
"Host" : ["127.0.0.1:9090"]
}
1
"response" : {
"status" : 404,
"headers" : {

3. Copy the unique code and replace the same part in your password reset link.
4. Finally reset the password of Tom and login in with Tom account.

Password changed successfully, please login again with your new password

Risk Categorization & Mitigation Strategy

This vulnerability poses a high risk due to its potential for exploitation and severe consequences.
When websites send passwords via email in plaintext, they expose user credentials to
interception, making it easy for attackers to access accounts if an email is compromised. More
concerning is the implication that these passwords are stored in plaintext, turning the database
into a prime target for breaches.

To eliminate this risk, applications must never store or send passwords in plaintext. Instead, they
should use strong cryptographic hashing algorithms like bcrypt, Argon2, or PBKDF2 to securely
store credentials. Password reset mechanisms should rely on time-limited, one-time-use reset
links sent via email rather than transmitting actual passwords. Additionally, these reset links
should be tied to the user’s IP and require additional authentication steps, such as MFA.

Security Touchpoints

If security had been built into the development process from the start, this vulnerability wouldn’t
have been an issue. Early on, threat modeling would have flagged the risk of sending passwords
in plaintext, giving developers a chance to address it before any code was written. Following
secure coding practices would have ensured that passwords were stored safely using encryption
instead of being left exposed.

Before the system even went live, automated security scans could have caught weak password
handling, while penetration testing would have revealed how attackers might exploit it. Code
reviews should have picked up any insecure reset mechanisms before they made it to production.
Once everything was running, logging and monitoring would have helped detect suspicious
password reset attempts or credential leaks.

11

e. Secure Passwords

Vulnerability Analysis

Setting a password is a crucial element in the authentication process. If your password is too short
or easily guessable, like "password", attackers can easily crack it and gain unauthorized access
to your system.

This vulnerability falls under the category of authentication risk, as weak passwords can be easily
guessed or brute-forced, leading to unauthorized access. From a business perspective,
compromised accounts can result in data breaches, operational disruptions, financial losses, and
regulatory penalties due to non-compliance with security standards such as NIST, PCI DSS, and
GDPR.

Exploitation

Attackers often use methods like brute-force attacks, rainbow table attacks, or password spraying
to try and guess passwords.

(AB) Vuln mpanents Ho

Mitigation

The most recommended defense is multi-factor authentication. While passwords fall under "What
you know", multi-factor authentication adds "What you have" (like a code from your phone) or
"Who you are" (like a fingerprint) to the authentication process. This makes it much harder for
attackers to break in, even if they have your password.

Other simpler methods include limiting the number of password attempts or using CAPTCHA to
prevent automated attacks. You can also enforce strong password policies, requiring passwords
to be at least 8 characters long and include a mix of uppercase letters, lowercase letters, special
characters, and numbers.

Since the setting of password policies is a relatively flexible item, it is important to verify that it will
not be broken in the penetration test at the testing stage, on the premise that it is designed in
accordance with documents such as NIST SP800-63B.

12

Insecure Deserialization

Vulnerability Analysis

Insecure deserialization is a vulnerability that occurs when applications deserialize data from
untrusted sources without proper validation. When an application converts serialized data (like
JSON, XML, or binary formats) back into objects, attackers can manipulate this data to include
malicious code or objects that, once deserialized, can trigger unintended functionality or code
execution. This vulnerability allows attackers to modify application logic, perform denial-of-service
attacks, or even execute arbitrary code on the server. It's particularly dangerous because the
attack occurs during a fundamental operation that many applications perform routinely.

Exploitation

~/./owasp/webgoat/lessons/deserialization
VulnerableTaskHolder. java

~/./owasp/webgoat/lessons/deserialization

VulnerableTaskHolder.java /home/kali/WebGoat/src/main/java/org/owasp/webgoat/lessons/de
serialization/org/dummy/insecure/framework

~/../owasp/webgoat/lessons/deserialization

The attack begins with cloning the source code of the WebGoat OWASP project from its host
repository on github. The next steps require the attacker to scour the /deserialization folder in the
/lessons directory, and observe the insecurely implemented java code that is supposed to perform
serialization and deserialization. Once the VulnerableTaskHolder.java file is created and
populated with definitions and functions, there must be another class program to run the attack.
The goal of Attack.java is to create an object of VulnerableClassHolder using attacker-controlled
input parameters that halt the application for exactly five seconds.
~/../owasp/webgoat/lessons/deserialization

Attack

Picked up _JAVA_OPTIONS: -Dawt.useSystemAAFontSettings=on -Dswing.aatext=true
rOOABXNYADFvemcuZHVEtbXkuaWszZWN1cmUuZnJhbwv3b3IrL1Z1bG51emFibGVUYXNISGISsZGVYyAAAAAAAAAATCAANMABZ Y
ZXF1ZXNOZWRFeGVjdXRpb25UaW1ldAAZTGphdmEvdGLtZSIMb2NhDERhAGVUaW1100wACNRhc2tBY3Rpb250ABIMamF2YS9s
YWSnLINOcmluZz tMAAhRYXNTITmFtZXEAfgACeHBzcgANamF2YS50aW11LINLcpVdhLobIkiyDAAAeHB3DgUAAAfpAhKIECAQ
j3AJeHQAB3NSZWVWIDVOAAVZDGVIcA=

After the classes VulnerableTaskHolder and Attack are defined, the next step is to compile the
Attack code so it can be run by the java virtualization environment. Executing the Attack program
produces an output in serialized (base64 encoded) format that can be validated by the WebGoat
task for Insecure Deserialization.

13

The lollowing input box receives a serialized object (a string) and &
deseriahres i

rogABXQAVE LRIH LwdSERZXN Lo LhbG LEZSEL ZSBRD3AduLCE) ITHNO YW S
IGIYZOEZS8LDII L THEVDZVYZnV s THROYWE QoW1 IGNhD 1Bwh3INZaWls
oSEpbWEnaWS: 1

Try 1o change this senalized cbject in order 1o delay the page résponse lor

exacily 5 seconds

i
W

MW DAOAAN ZBGVICA== | | Submit
Congratulations. You have successfully complated tha

assignment.
LS A

The WebGoat application verifies that the task was successfully completed. The page response
was indeed delayed by exactly 5 seconds per the serialized input.

ecure.framework.VulnerableTaskHolder;

public static void main(Stringl] args) throws FileNotFoundException, IOException,ClassNotFoun
dException

VulnerableTaskHolder o = new VulnerableTaskHolder(“sleep”, 5*);
£ b (Y-

= now ByteArra
« new ObjectOutputStream(baos);

4.getEncoder(). ToString(baos.toByteArray()));

Using the cat command to display the contents of the Attack.java can be seen above. A simple
program instantiates a VulnerableTaskHolder object into memory using two arguments to create
a delay in the page response. The object is then written to an output stream and its encoded
format is printed to the terminal.

Risk Categorization, Mitigation Strategy, & Security Touchpoints

| would classify insecure deserialization as a high-risk vulnerability. It has severe potential impact
(allowing remote code execution in many cases) combined with widespread prevalence across
different technologies and frameworks. OWASP consistently ranks it among the top 10 web
application security risks because exploitation often leads to complete system compromise, and
detection can be challenging during code reviews or automated scanning.

Mitigation strategies for insecure deserialization include implementing integrity checks with digital
signatures, using safer serialization formats like JSON, enforcing strict type constraints, applying
whitelist-based filtering, running deserialization in low-privilege environments, and monitoring
deserialization operations for anomalies. Within the Seven Touchpoints model, this vulnerability
would primarily be addressed during Code Review (Touchpoint 3), where security-focused
reviews would identify unsafe deserialization practices before deployment. Risk Analysis
(Touchpoint 1) would identify serialization/deserialization of untrusted data as high-risk areas,
while Penetration Testing (Touchpoint 6) would help identify existing vulnerabilities through
controlled exploitation attempts. Security Requirements (Touchpoint 2) would establish safe
serialization practices early in development. Code Review remains the most effective touchpoint
as it enables systematic identification of unsafe patterns when fixes are less costly.

14

Server Side Request Forgery

Vulnerability Analysis

Server-Side Request Forgery (SSRF) is a vulnerability that allows attackers to induce server-side
applications to make requests to unintended locations. By manipulating URLS or parameters that
the server uses to fetch resources, attackers can force the server to connect to internal services
behind firewalls, access restricted areas, or interact with external systems. This vulnerability
essentially turns the vulnerable server into a proxy that can reach otherwise inaccessible
resources, potentially exposing sensitive data, enabling port scanning of internal networks, or
facilitating further attacks against backend systems that trust the compromised server.

Exploitation

a. Tom & Jerry File Access Manipulation

Time Type Dvection Method URL
W6IEEBISFeb 2025 HITP 5 Mequest POST hitp:i127.0.0,
Request

Pretty
1 POST /WebGoat /SSRF/taskl HTTP/1.1
Momt: 127.0 0. 1: 5080
User-Agent: Mozilla/5 0 (X11; Linux x86_64; rv:128 0) Gecko/20100101 Firefox/128 ¢
4 Accept o (e
Accept -Language: en-US en; g=0 3
Acceapt -Encoding: grip, deflate, br
;7 Content-Type: application/x-www-form-urlencoded, charset«UuTF.-g
X+Requested-With: XMLHttpReguest
) Content -Length: 20
Oragan: http: //227 0,0 1: 8080
1 Commection: keep-alive
Raferar: http: /7127 0.0 1 8080/ Nebloat /atart mvcTuse rnase~userol
Cookie: JSESSIONIO= iGlOtUf 7CuUAGeEIVanL rYBI_VUIngqXaws_8_oxf
14 Saec-Fetch-Dest! asmpty
Sec-Fetch-Mode cors
Sec-Fetch -Site. sSame-0origan
Priority: w0

urls imagesi2Fton png

The attack beings by intercepting the traffic from a client requesting server resources on a
vulnerable protocol, achieved through a proxy, a.k.a Machine-in-the-Middle (MitM) attack. The
HTTP POST request references the url (uniform resource link) to an image residing on the host
server (see tom.png).

POST /atOoat /Y98 /tashl WITH/] 1 MITR/L L 20
Most: 127 0.0 1 oM Corvmction basp-slive
Ueershgent Moailloss O (R11, Lames o865 64, o 120 9) Gacha/20L00103 Furefae/ie 0 e tent Typa w0l MO aan/) pon
o Moot e Oote Tuw, 3% Feb 2005 21 1 2T OWT
MOt Langunge w0 U8 e 0 3 Contont Langth 234
Mot -Braading grip, deflate, b
Cortant Type sopl scstaony s cwweFarm wrl encoded NerpatsyTh . g
o Aapmntad BLEA IR A et Tesswromplated™ 11
tent Legth 22 S S
SrAgAn Mip /7227 0. 0.1 00 9 o -
Soss i, seeeal i “eanigrmant * ¥ Tashd
Rafarar Mg 127 0 0 1 0000/ Weblant /9t art wvt Puserraae uaerdl [ot temptmanitnde’ true

Coskia ISESATONION L GLOLUF NOuACal 1V ans 482 VWlngnt wd_B_Onf
Sec Fatch Dent gty

Sac Fatch Mode cars

Soc Fatch Site same ariger

Priocity w@

Lo amagest\ IS arry

Once the traffic is intercepted by any tool, in this case Burpsuite, we can redirect the server url
request to a file of our choice, such as jerry.png. The Repeater tool in Burpsuite allows us to
resend the traffic to the requesting client with the modified data.

15

?‘\ WEBGOAT Server-Side Request Forgery
[— gsFo:gTSSRF
kst Qu AFTER SSRF POST REQUEST MODIFIED
- coQoo-° POST b e T
P — Response —
ey [sad mactly ha e APV ey Ren e pane
R TR IR =T 1 HTTP/1.1 200 OK 5
o R~ Vou tered N PAeel B e 2 Connection: keep-alive "g
."m'" 3 Content-Type application/json
el 4 Date Tue, 25 Feb 2023 2138 02 GHT
s o (&Y % Content -Length 2%4
g
y ¢
v *lessonConpl ated” true,
2 9 *feedback®: "You rocked the SSRF
< B L4 *output *
*\\\"i1sage\\\" alt=\\\"Jerry\\\'
. L1 *assigrwment " “SSAFTaskl",
QL:-/’ \'), 12 *attemptWasMade ™ true
T

Hence, the before and after images of tom and jerry appear on the WebGoat application. The
task has been completed to display a modified file url requested from the server. Confirmation is
verified through the HTTP 200 OK status code.

b. Download Another Resource’s Content (IP Redirect)

POST /WebGoat/SSRF/task2 HTTP/L.1
Host: 127.0.0.1: 8080
User-Agent: Mozilla/5.0 (¥11;, Linux x85 64; rv:128.0) Gecko/20100181 Firefox/128 0
Accapt: */™
Accept -Language: en-US en; 0.5
Accept-Encoding: gzip, deflate, br
Content-Type: application/x-www-form-urlencoded;, charsetsUTF-8
X-Requested-With: XMLHttpRequest
g Content-Length: 20
10 Origin: http: //127.0.0.1: 8080
11 Connaction: keep-alive
17 Referer: http://127.0.0.1:8080,/WebGoat /fstart. mvec?username=usarol
13 Coockie: JSESSIONID=iGlOtUf7Cu4GeElVimirVB2_VUInggX3ws_B_cKf
14 Sec-Fetch-Dest: espty
15 Sec-Fetch-Mode: cors
16 Sec-Fetch-Site: samé-origin
17 Priority: 0

LA e 0 k)

0 =J

19 url=http: //ifconfig. pro

The attack beings by again intercepting the traffic in between requesting client and the server
hosting content. This time, the url points to a domain name under the attacker’s control, which
can be used to fool users into trusting the new server content. Malicious content may now be
served.

16

Instead of attacking the WebGoat application using Burpsuite, this attack is demonstrated using
the command line terminal interface with the curl command. Curl is used to copy the url from an
available Internet resource. The User-Agent string is copied as the requesting Mozilla client and
the same cookie (assumed to be stolen) from the WebGoat session is used to target the local
machine interface 127.0.0.1 on port 8080. The POST data is deliberately injected with the “--data”

"lessonCompleted” : true,

"feedback” : "You rocked the SSRF!",

"output” : "<title> IP: 128.237.82.211 info<\\/title>

<pre><b
r>¢!— force ipv6<\\/a> <a href=\\\"
http:\\/\\/[2605:2700:0:5::4713:95¢5]\\/\\\">6 no dns<\\/a> | force ipva4<\\/a> —
IP: 128
.237.82.211
HOSTNAME: cmu-secure-128-237-82-211.nat.cmu.net<b
r>USER_AGNET : Java\\/23.0.2
LANGUAGE:
ENCODINGS:

<hr>
Feature list:

$curl ifconfig.pro
1.1.1.1

$curl ifconfig.pro\\/ip.host
1.1.1.1 r.d.ns.look.up

$curl i
fconfig.pro\\/host
r.dns.look.up

$curl ifconfig.pro\\/help<b
r>this help file

now ipv6 ready!
to force ipv6 use 6.ifconfi
g.pro
to force ipv4 use 4.ifconfig.pro

¢!— end —
<
br><hr>
¢!— referral links: <a href=\\\"http:\\/\\/ww.linode.com\
\/?2r=657ce52d44839%9ele764b5e514f74daf2825a98c0@\\\">Linode - Xen VPS Hos
ting<\\/a> | GeekSt
orage - WebHosting For Geeks, By Geeks<\\/a> | <a href=\\\"http:\\/\\/
www . namecheap.com\\/?2aff=22484\\\">Namecheap.com domains<\\/a> —

If you would like to keep ifconfig.pro running: cashapp $jbphoto221 |
or donate via <a href=https:\\/\\/jbphotome.square.site\\/product\\/i
fconfigpro\\/182?cp=truegsa=truegsbp=truegdq=false>Square (jbphoto)<\\/a
> ’
"assignment” : "SSRFTask2",
"attemptWasMade" : true

1
3
4

switch pointing to another server residing at domain ifconfig.pro.

[Ag] ¥ulm & Culdaled Components »

(AT} Ideriify & Auth Faiure Chck the bution and figung oul whal happenad
[AE) Softwans & Daia Inlegeity ¥ -~
w
[A%) Security Logging Fallunes ¥
iry this

[#10) Server-side Requast Forgery =

You rocked the S5RF!

Bervei-Side Reguest Forgery

Risk Categorization, Mitigation Strategy, & Security Touchpoints

17

Change the request, so the server gets information from http:/ifconfig.pro

I would classify Server-Side Request Forgery (SSRF) as a high-risk vulnerability. It can lead to
unauthorized access to internal services, data exposure from cloud metadata endpoints, potential
remote code execution through internal system compromise, and often bypasses network security
controls by leveraging the trusted position of the vulnerable server. Additionally, modern cloud
architectures have increased the impact of SSRF attacks by providing access to instance
metadata services that can expose sensitive credentials and configuration information.

Mitigation strategies for SSRF include implementing strict URL validation with allowlists for
permitted domains and protocols, using indirect object references instead of direct resource
identifiers, deploying network-level protections like segregating application servers from sensitive
internal services, disabling unused protocols, setting connection timeouts, implementing proper
authentication for internal services, and monitoring outgoing requests for anomalous patterns. In
the Seven Touchpoints model, SSRF vulnerabilities would primarily be addressed through Code
Review (Touchpoint 3) by identifying unsafe URL handling and request patterns, Risk Analysis
(Touchpoint 1) by mapping potential attack vectors in the application's request flow, and Security
Requirements (Touchpoint 2) by establishing secure URL handling practices early in
development. Additional protection would come from Architecture Analysis (Touchpoint 4) by
designing proper network segmentation, and Security Testing (Touchpoint 5) by specifically
crafting tests to detect SSRF vulnerabilities. Code Review remains particularly effective because
it can systematically identify unsafe request handling patterns before deployment, when
remediation is less costly, while Security Requirements would prevent the introduction of
vulnerable patterns by establishing proper validation controls from the start.

Cross-Site Scripting (XSS)

Exploitation

1. Reflected XSS

In the reflected XSS Attack, we can inspect element in the console and find out that the field
accepts text values. This allows us to input commands such as:

“4128 3214 0002 1999 "><script>alert(RXSS)</script>

This generates alerts, which are not very useful, but show the importance of input sanitization.

2. DOM-Based XSS

Identification

For this exploit, we first identify the potential for DOM-based XSS attacks. The ‘base route’ is
given, we need to find the test route. For this, we navigate to the debugger tab on console tools.
The file pathway is: Webgoat/js > goatAPP > view > GoatRouter.js. In this file, we can discover

18

the routes used during testing that managed to stay in the app during production. We find
‘test/ :param’ : ‘testRoute’, in the debugger. Incorporating the test route into the base route, we
get start.mvc#test/ as the correct command.

Using the earlier command, we can incorporate it into the URL like so:
http://127.0.0.1:8080/WebGoat/start. mvc#test/<script>webgoat.customjs.phoneHome();<%2fscr
ipt>. This takes us to a new tab, where we can use the console to output the correct
phonehome response.

Identify potential for DOM-Based XSS

DOM-Based XSS can usually be found by looking for the route configurations in the client-side
code. Look for a route that takes inputs that are "reflected" to the page.

Try It! Reflected XSS

The assignment’s goal is (o identify which field is susceptible to XSS.

Itis always a good pracice 1o validate all input on the server side. XSS can occuriwhen) .
unvalidated user input gels used in an HTTP response! In a reflected XSS attack an attacker can For this example, you will want to look for some ‘test' code in the route handlers (Wet?Goat uses
craft a URL with the attack script and post it to another website, email it, o otherwise get a victim backbone as its primary JavaScript library). Sometimes, test code gets left in production (and
fo click on it. often test code is simple and lacks security or quality contrals!).
guration L) ;
An easy way to find out if a field is vulnerable to an XS§ attack is to use the alerit() or Your objective is to find the route and exploit it. First though, what is the base route? As an
Components > console. log() methods. Use one of them 1o find out which field is vulnerable. example, look at the URL for this lesson ...it should look something like /WebGoat
Mlure > /start. mvc#lesson/CrossSiteScripting.lesson/9. The 'base route’ in this case is: start.mve#lesson/
niegrity N Shopping Cart The CrossSiteScripting.lesson/9 after that are parameters that are processed by the JavaSeript
Fallres > Cart ltems - To Buy Now Price |Quantity |Total | route handler.
uest Forgery > Studio RTA - Laptop/Reading Cart with Tilting Surface - == = |ls0.00 So, what is the route for the test code that stayed in the app during production? To answer this
Cherry i I question, you have to check the JavaScript source.
Dynex - Traditional Notebook Case | 27.99([1 ‘ $0.00
T T [Submit J
Hewlett-Packard - Pavilion Notebook with Intel lentrino |1599.98((1 2 |[$0.00
3. Year Performance Service Plan $1000 and Cver 299 99| 1

Enter your credit card number:

Enter your three digit access code:

14 0002 1999 type="TEXT">

Risk Categorization

The risk categorization for XSS vulnerabilities would be high. This is particularly due to the host
of impacts that it could have. Attackers could gain access from session hijacking, they could
also steal sensitive information such as cookies, usernames, passwords. There could also be
potential for malwasre injection and phishing attacks. Finally, the could use these vulnerabilities
for conducting unathorized actions from a user. The high category of risk is due to the
reputational and legal liabilities that can arise from potential data breaches. The ease of
exploitation also remains high, if input sanitization is missing.

Mitigation Strategies

First and foremost, input validation and sanitization is key. As demonstrated earlier, allowing
text input for a field that should only have numbers, allows us to run and generate scripts by
entering commands for an alert. Next, we want to ensure that we encode all output before
rendering in the browser. This can be done by either ensuring we Convert < to <, > to >,
and " to " or using escape characters in dynamic scripts with libraries like DOMPurify. We

19

http://127.0.0.1:8080/WebGoat/start.mvc#test/
https://github.com/cure53/DOMPurify

can also ensure we use flags such as ‘HttpOnly’ and ‘Secure’ to prevent client-side scripts from
using cookies.

Security Touchpoints

Identifying Abuse Cases would help us understand how exactly a malicious actor can behave,
allowing us to move on to Risk Management. In this phase, we can organize the risks by
priority, and remediate the high or critical level vulnerabilities first - ones that directly violate PII
or financial information. Next, we can conduct periodic code reviews for each stage in the
development cycle, this will help us start conversations between the security and dev teams.
Finally, conducting penetration testing will help us get an idea of what is the possible extent of
error handling, and what data can be used to aggregate other types of information. As part of
security operations, we can also set up logging & monitoring mechanisms and default incident
response plans. These will help us recognize anomalous scripts and input patterns, and have a
pre-planned approach for dealing with similar issues.

Path Traversal

Vulnerability Assessment

Path traversal allows attackers to manipulate file paths and access files and directories outside
of the intended directory of use. They can use this to gain access to sensitive or critical files :
configuration files, system files, and confidential user data are all at risk. Common targets are
letc/passwd, /etc/shadow, config.php, .env files. This has the potential to affect every aspect of
the CIA triad, making any application that allows this attack - an insecure application.

Exploitation

Exploitting the intial stages of the application is relatively easy, we start by adding *../ and *....//
to the input fields for the username. Next, we can go one step further by interceptring traffic
using burpsuite, and entering ../ just before the filename. For retrieving other files from the
system, we intercept traffic using burpsuite, and open the repeated tab. In this tab, we add id

= ../, but we get an error. To solve this, we can use the decoder to find the hex values of the
command, and use it with the function along with the earlier given path-traversal-secret.jpg
filepath.

20

Bl sup Projea intruder Repester wWindow Help

i Request to http://127.0.0,1:8080
Dashboard Target Intruder Repester Sequencer Decoder Comparer logger Extensions Leam

Forward Drop Intercept is on Adio |
Ly Raw M =8

X=Requested-Vith: XMLHCUpRequest
sec-ch-ua-mobile: 70 Request
User-Agent: Mozilla/5.0 (Vindows NT 10.0; Vinc4; x€
sec-ch-ua-plavtorn: “Windows"
Origin: heep://127.0.0.1:8080
Sec~Fetch=Site: sanevorigin
Sec-Fevch-Mode: cors
14 Sec-Fetch-Dest: empty
15 Referer: http://127.0.0.1:8080/VebCoat/stazt.zve
Accept-Bncoding: g¢zip, deflate
Accept-Language: en-US, en;q=0.9 i
L8 Cookie: JSBSSIONID=DAYCK3ANFg)jIxH _TBDOxkJalth-INpjlx = **
Connection: close 3

====-YebKit ForzBoundaryRLXQbEFxuxqPvaQs
Content-Disposition: form-data; name="uploadedFileR
Content-Type: image/png C

OPNG

Risk Categorization

This vulnerability can be categorized as critical. This is because of a severe violation of the CIA
triad, along with high risks of potential impact. Attackers can gain sensitive files and
configuration data. They can also expose database credentials, API keys, or other sensitive
information. There is also a potential for remote code execution, by modifying config files.
Finally, attackerrs can also conduct a denial of service DoS attack by deleting or corrupting
system files.

Mitigation Strategy

Input validation is again a recurring theme that would help us here as well. Using a whitelisting
approach would only allows specific files or extensions. We can setup parameters to reject any
input that contains ../’ or ‘%2e%2e%2f or other traversal characters that are encoded. We can
also implement containerization, and avoid userinput in filepaths. We can implement access
controls for any web applications asking for access to system-critical directories like /usr/bin, or
C:\Windows\. Using secure libraries like express-validator in Node.js can help with their features
of built-in traversal protection.

Security Touchpoints

Threat modeling would have identified the risk of directory traversal by mapping out how user
input is handled in file paths. Secure coding practices, including strict input validation and output
encoding, would have blocked traversal characters like . . /. Automated security scanning
integrated into the CI/CD pipeline would have flagged unsafe file handling functions before
deployment. Penetration testing with tools like Burp Suite would have exposed the flaw using
encoded payloads, simulating real-world attacks. Regular code reviews focusing on user input
and file operations would have caught unsanitized inputs early in development.

21

https://express-validator.github.io/docs/

